142 research outputs found

    Semi-Automated SVG Programming via Direct Manipulation

    Full text link
    Direct manipulation interfaces provide intuitive and interactive features to a broad range of users, but they often exhibit two limitations: the built-in features cannot possibly cover all use cases, and the internal representation of the content is not readily exposed. We believe that if direct manipulation interfaces were to (a) use general-purpose programs as the representation format, and (b) expose those programs to the user, then experts could customize these systems in powerful new ways and non-experts could enjoy some of the benefits of programmable systems. In recent work, we presented a prototype SVG editor called Sketch-n-Sketch that offered a step towards this vision. In that system, the user wrote a program in a general-purpose lambda-calculus to generate a graphic design and could then directly manipulate the output to indirectly change design parameters (i.e. constant literals) in the program in real-time during the manipulation. Unfortunately, the burden of programming the desired relationships rested entirely on the user. In this paper, we design and implement new features for Sketch-n-Sketch that assist in the programming process itself. Like typical direct manipulation systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing shapes, relating shapes to each other, and grouping shapes together. Unlike typical systems, however, each tool carries out the user's intention by transforming their general-purpose program. This novel, semi-automated programming workflow allows the user to rapidly create high-level, reusable abstractions in the program while at the same time retaining direct manipulation capabilities. In future work, our approach may be extended with more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST 2016

    Isabel la Católica ante el tribunal de la historia

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 2009-201

    Divide and concur: A general approach to constraint satisfaction

    Full text link
    Many difficult computational problems involve the simultaneous satisfaction of multiple constraints which are individually easy to satisfy. Such problems occur in diffractive imaging, protein folding, constrained optimization (e.g., spin glasses), and satisfiability testing. We present a simple geometric framework to express and solve such problems and apply it to two benchmarks. In the first application (3SAT, a boolean satisfaction problem), the resulting method exhibits similar performance scaling as a leading context-specific algorithm (walksat). In the second application (sphere packing), the method allowed us to find improved solutions to some old and well-studied optimization problems. Based upon its simplicity and observed efficiency, we argue that this framework provides a competitive alternative to stochastic methods such as simulated annealing.Comment: 4 pages, 2 figure

    Synthesis, physicochemical and pharmacokinetic studies of potential prodrugs of β-L-2'-deoxycytidine, a selective and specific anti-HBV agent

    Get PDF
    β-L-2′-Deoxycytidine (β-L-dC) is a potent, selective and specific anti-hepatitis B virus (HBV) agent. To improve its oral bioavailability, several derivatives involving sugar or base acylation, as well as N4-derivatization with an N,N-(dimethyl-amino)methylene function, were synthesized. The physicochemical characteristics (including chemical stabilities, solubilities and distribution coefficient values) and pharmacokinetics of these compounds were determined and compared with those of the parent drug, β-L-dC. Presented in part at the 14th International Conference on Antiviral Research, Seattle, Washington, USA, 8–13 April 2001. Antiviral Reseach 2001; 50:A79

    Prox-regularity of rank constraint sets and implications for algorithms

    Get PDF
    We present an analysis of sets of matrices with rank less than or equal to a specified number ss. We provide a simple formula for the normal cone to such sets, and use this to show that these sets are prox-regular at all points with rank exactly equal to ss. The normal cone formula appears to be new. This allows for easy application of prior results guaranteeing local linear convergence of the fundamental alternating projection algorithm between sets, one of which is a rank constraint set. We apply this to show local linear convergence of another fundamental algorithm, approximate steepest descent. Our results apply not only to linear systems with rank constraints, as has been treated extensively in the literature, but also nonconvex systems with rank constraints.Comment: 12 pages, 24 references. Revised manuscript to appear in the Journal of Mathematical Imaging and Visio

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    Get PDF
    We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 M⊙–1.0 M⊙ and mass ratio q ≥ 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2yr−1 ⁠. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH ≳ 0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure
    corecore